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Abstract Existing formal verification methods do not handle systems that com- 
bine state machines and data paths very well. Model checking deals with finite- 
state machines efficiently, but model checking full designs is infeasible because 
of the large amount of state in the data path. Theorem-proving methods may 
be effective for verifying data path operations, but verifying the control requires 
finding and proving inductive invariants that characterize the reachable states of 
the system. 
We present a new approach to verification of systems that combine control FSMs 
and data path operations. Invariants are specified only for a small set of control 
states, called clean states, where the invariants are especially simple. We avoid the 
need to specify the invariants for the unclean states by symbolically simulating 
over all paths to find the possible next clean states. 
The set of all paths from one clean state to the next is represented by a regular 
expression, which is extracted from the control FSMs. The number of paths is 
infinite only if the regular expression contains stars. The method uses a heuristic 
to generalize the symbolic state to cover all of the paths of the starred expression. 
We have implemented a prototype tool for guiding an existing symbolic simulator 
and verification tool and used it successfully to prove properties of the Instruction 
Fetch Unit of TORCH, a superscalar microprocessor designed at Stanford. With 
much less effort, we were able to find all the bugs in the unit that were found 
earlier by manually strengthening the invariants. 

1   Introduction 

Existing formal verification methods do not handle systems that combine finite-state 
machines (FSMs) and data paths very well. Model checking [6, 5, 4] the full design is 
infeasible because of the large amount of state in the data path. Verifying the control 
FSMs in isolation is difficult, because specifying them independently is difficult - the 
design requirements are usually stated as properties of the data path, not the FSMs 
themselves. The specification of the control is that it causes the data path property to be 
satisfied. Abstracting the data path to reduce the amount of state is sometimes possible, 
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but it is subtle and may require changes in the control that introduce false errors or 
cause true errors to be missed. 

Theorem-proving methods require finding and proving inductive invariants that char- 
acterize the reachable states of the system. This is not necessarily difficult for a system 
that is implementing an algorithm (e.g. a floating point unit). However, when a design 
has significant control complexity, finding invariants is primarily a tedious manual trial- 
and-error process. 

One path to a solution to these problems would be to find ways to reduce the effort 
to find inductive invariants in these designs, through automation or methodology.* Al- 
though the problem of automatic invariant discovery has been studied over the years, 
there is not yet a complete solution to the problem [13, 11,7, 3, 18, 2, 1]. In particular 
most of the work seems not to be applicable to register transfer level (RTL) hardware de- 
signs. Most current designs are described at RTL using a hardware description language 
(HDL) such as Verflog or VHDL, and are then manually or automatically synthesized. 

Some of the invariants that are needed in a proof are historyless properties, by which 
we mean that they are provable with no assumptions about the previous state of the sys- 
tem. Equivalently, a historyless property is true of every state that has at least one prede- 
cessor in a state transition graph of the system behavior. The concept can be extended 
to include properties that hold for all states with at least one fc-predecessor, where a 
fc-predecessor is a state from which there is a path of length k to the state satisfying 
the invariants. Of course, for a historyless property to be an invariant, the initial state 
must satisfy the property. In RTL designs, historyless invariants are surprisingly useful, 
because they capture some important properties of data propagating through acyclic 
chains of registers. Also, multi-phase designs (where alternating layers of registers are 
clocked on different phases of a single clock) tend to lead to historyless invariants that 
relate the contents of consecutive latches which are clocked in different phases. The dis- 
covery and use of historyless invariants in RTL designs was explored in this conference 
in 1996 [24]. The discovery of historyless properties is also a component of the work 
cited above for finding invariants in software and protocol descriptions. 

This paper attacks the invariant problem in another, complementary, way, by trying 
to simplify the problem. Examination of a number of designs has revealed a general 
tendency that can be exploited. Many systems can be thought of as processing a se- 
quence of transactions, where processing a transaction involves a sequence of steps. 
When the system is not processing a transaction, we say it is in a clean state. This paper 
is based on the observation that the invariants that needed for the clean states are much 
simpler than for the other states. The reason for this is simple: much of the complexity 
of inductive invariants stems from capturing the bookkeeping that happens during the 
processing of a transaction. 

The partial solution proposed here is to identify the clean states of the system and 
specify their invariants. These invariants are proved by symbolically simulating along 
every path from each clean state q to the next clean state q', and showing that if the 
invariant held in q, it will hold in each q' no matter what path was taken from q to q'. 

1 It is important to distinguish between the difficulties of finding inductive invariants vs. proving 
inductive invariants. In general, finding the invariants is much more difficult than proving them 
after they have been found. 



The paths between the clean states are described using regular expressions. 
The most serious technical difficulty is that there can be an infinite number of paths 

from q to q', because of cycles of unclean states along the path. However, in some 
systems at least, these cycles are simple wait loops, so it can be shown that paths that 
go around the cycle any number of times are equivalent to those that go around zero or 
one times (these ideas are made more precise below). 

Viewed at the level of abstraction of the previous paragraph, there is little new about 
this approach. Indeed, it is very similar to very early work on program verification, espe- 
cially the inductive assertions method of Floyd [9], which cuts all cycles in a program 
flow graph, then finds assertions that hold at the end of the cycle if they hold at the 
beginning. King specifically used symbolic simulation was to derive invariants [14]. 
Symbolic simulation along paths between major states has also applied to formal verifi- 
cation of microprograms [8,15,16]. The idea of using regular expressions to represent 
all possible execution paths comes directly from Tarjan [25], who suggested using reg- 
ular algebra for program flow analysis. 

However, RTL hardware design is quite different from sequential program and mi- 
croprogram verification. To a programmer, RTL designs would appear to be very low- 
level. Control flow is encoded into one or several FSMs which are separated from the 
data path. Second, symbolic simulation of even one step results in a huge expression for 
the symbolic state, since hundreds of state variables may be updated simultaneously. In 
contrast, a single step in a sequential program or microprogram would typically be a 
small number of assignments to variables. 

While the approach comes out of a tradition of program verification and analysis, 
these ideas have not previously been applied to RTL designs, however. The reason for 
this is probably that synthesizable HDL descriptions do not express control flow in 
the same way as sequential programs. Instead, FSM controllers are defined which are 
separate from the data path. The method proposed here extracts the regular expressions 
from the FSMs in the design, not the syntactic structure of the HDL. The other new 
insight is that, in many cases, finding an invariant around a loop between clean states is 
simple, because the loop often represents a wait state. 

These results are preliminary. The proofs still require more effort than one would 
hope, the invariants are still large (but much smaller than without the method), and it 
has only been evaluated on one real design. However, it is a new approach that appears 
to have the potential to be a practical verification method for some designs that are 
difficult or impossible by other methods. 

A simple example 

A very simple example is depicted in Figure 1, which is used to make some of the 
above discussion more concrete. The example consists of three registers, controlled by 
a small state machine. Periodically, the new-data input to the state machine goes high, 
and, in the next cycle, a new value is loaded into source. The state machine then waits 
for a ready signal indicating that the new value can be transferred to dest. Then, half 
the data in source is copied to middle and the state machine enters state J\; in the next 
cycle, that value is copied to dest; simultaneously, the remaining data is copied from 



new data 

Source Middle Dest 

(a) 

Fig. 1. (a) Data Path (b) Control FSM 

source to middle and the state machine enters T2. In the next cycle, the remaining data 
is copied from middle to dest and the state machine returns to state C. 

Suppose the system is specified to have the property that, whenever it is in state C, 
the contents of source and dest registers are the same. Proving this by induction would 
require providing an inductive invariant (which is actually the induction hypothesis), 
which must be preserved by all state transitions. The inductive invariant would need to 
include properties in addition to the basic requirement: When in state T\, the contents of 
middle equals the lower half of source, and when in T^, the contents of middle equals the 
upper half of source and the contents of dest equals the lower half of source. Intuitively, 
the inductive invariant needs to track data movement step-by-step in its journey from 
source to destination. 

This type of phenomenon occurs very frequently, but the systems are obviously 
more complex than this example, as are the additional properties required of the induc- 
tive invariants. In real memory systems, for instance, memory values may be loaded 
in many cycles and pass through several intermediate registers while being packed to- 
gether in the right form. An invariant must relate all the intermediate registers with the 
memory and cache for all the different modes of execution. Hence, in practice, finding 
invariants is by far the most time-consuming task when verifying with a theorem prover. 

The verification of a property only in clean states is illustrated in Figure 2. 
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Fig. 2. Verifying a property P only in the clean states. 



The symbolic simulator operates on symbolic states, which map state variables to 
logical expressions. For each clean state, the simulator is presented with a symbolic 
state that initializes all storage elements to distinct symbolic constants. Also, a sequence 
of logical conditions on the data path and inputs must be satisfied for a particular path 
to be followed through the FSM. The conjunction of these conditions is called the path 
constraint. The result of symbolically simulating over a path is a new symbolic state 
and a path constraint. 

To prove the invariant, it is then necessary to show that for each clean state that, if 
the path constraint is satisfied and the invariant holds on the initial symbolic state, it also 
holds for the symbolic states reached by symbolically simulating over all paths. The set 
of all paths from one clean state to the next is represented by a regular expression, which 
is extracted from the control FSMs. There number of paths is infinite only if the regular 
expression contains stars. The method uses a heuristic to generalize the symbolic state 
to cover all of the paths of the starred expression. From another viewpoint, the method 
compresses sequences of steps through the state graph so that there is only a single 
composite step from each clean state to the next. The composite step is computed by 
symbolically simulating along multi-step paths. 

In the example of Figure 1, we would define one clean state, C. Only the initial 
invariant, that the source and dest registers are equal when in state C, would need to 
be proved, but it would need to be proved for the symbolic states yielded by simulating 
over all paths from C back to C. 

This method has been used to prove invariants for the Instruction Fetch Unit of 
TORCH [22, 21], a superscalar microprocessor designed at Stanford. The same bugs 
were found as in an earlier effort [23], but with a major reduction in effort. 

2   The Verification Method 

Extracting regular expressions for control paths 

Regular expressions are used because they make it easy to identify and handle cycles in 
the FSMs. Hence, the first step of the method is to obtain regular expressions describing 
all paths between the clean states. This requires extracting the state machine controllers 
in Üie design, constructing a single product machine (called "the FSM," below), locating 
the clean states within the FSM, and, for each clean state, deriving a regular expression 
describing the control paths to the next clean states. 

Currently, all of these steps are manual, although everything can be done by well- 
known algorithms, except extraction of the FSMs from the HDL description. FSM ex- 
traction can probably be done automatically in many cases; however, for the designs we 
are considering, manual extraction by the designer is not difficult. 

The FSM is a high-level finite state machine. The outputs are not modelled, since 
they are not relevant for invariant checking. The transitions are labelled with logical for- 
mulas, which are written in a quantifier-free fragment of first-order logic which includes 
Boolean signals and operators, uninterpreted functions, equality, bitvectors, arithmetic, 
and arrays. The logical formulas can include individual Boolean signals (which appear 
as propositional symbols), or predicates on the data path signals (e.g., 'Vi = r2" to 
represent the output of a comparator between two registers). 



The alphabet of the regular language consists of the set of input values to the FSM. 
Sets of inputs are represented as logical formulas (taken directly from the FSM). 

More formally, a regular expression consists of 

- The empty string, e; 
- A Boolean formula over the input signals to the FSM; 
- A concatenation of two regular expressions, (a • /?); 
- A union of two regular expressions, (a + ß); 
- Kleene closure of a regular expression, a*. 

In our examples, we assume that * has higher precedence than •, which has higher 
precedence than +, and drop parenthesis accordingly. In the Lisp implementation, the 
regular expressions are actually represented using Lisp syntax. 

For every clean state, we can construct from the original FSM a finite automaton 
describing the set of all paths of non-zero length from that clean state to another clean 
state that do not have clean states except at the beginning and end. The regular ex- 
pression of all input sequences accepted by this finite automaton can be computed by 
standard algorithms from finite automaton theory (see [10], for example). 

In the example of Figure 1, the desired regular expression is: 

new-data + new-data ■ ready  ■ ready ■ True • True 

In this case, the Boolean combinations are all single signals or their complements (indi- 
cated by the overlining). In general, of course, a single "symbol" in the regular expres- 
sion may be a more complex Boolean expression. 

Guiding symbolic simulation 

The symbolic simulator simulates a high-level netlist (HLN), which is a graph structure 
representing a digital circuit. The vertices of the graph are circuit elements, such as 
adders, Boolean gates, registers, and memories. The edges in the graph represent arrays 
of wires. A symbolic state is a map from state variables (registers and memories) to log- 
ical expressions representing the symbolic values of the state variables. Given an HLN, 
a symbolic state S, and logical formulas for the circuit inputs, the symbolic simulator 
returns a symbolic state representing the updated values of the state variables after one 
clock cycle of execution of the circuit. 

Symbolically simulating along the paths of a regular expression is called path simu- 
lation. Path simulation operates on pairs (S, P), where S is a symbolic state and P is a 
conjunction of Boolean formulas, called apath constraint. Given an HLN, a pair {S, P), 
path simulation produces a finite set of pairs {(5', P')}, where P' is the conjunction of 
P with additional path constraints. 

For each clean state, we start with a symbolic state S that assigns the correct con- 
stants to the FSM state variables and distinct symbolic constants to all other state vari- 
ables. Path simulation along the regular expression from the clean state to every next 
clean state yields a set of (S1, P') pairs representing the symbolic states and path con- 
straints when the next clean states are reached. 



If / is a Boolean formula on the state variables, I(S) represents the formula obtained 
by substituting for each state variable in / the corresponding logical formula from S. 
To prove that / is an invariant, we must show that P' A I(S) =>• I(S') for each pair 
produced by the path simulation. The assumption that P' holds is justified, since the 
FSM could only have followed the path if all the conditions in P' were satisfied. 

At times, it is necessary or desirable to approximate a set of pairs with a single 
pair. We say (S',P') approximates <S", P") if the validity of P' A I{S) =>• I(S') is 
a sufficient condition for the validity of P" A I(S) =* I(S"). The approximation is 
conservative: The approximation may cause the proof of a valid invariant to fail, but 
will never allow an invalid invariant to be proved. 

A simple approximation is used, called the merge of a set of pairs into a single pair. 
If both states in the pair map a state variable to the same logical formula, the merged 
state maps it to the same formula; otherwise, the merged state maps the state variable to 
afresh symbolic constant, which is a named constant that has not previously appeared 
in a symbolic state or path predicate. The merge of two pairs (S, P) and (5', P') is a 
pair (S", P"), where S" is the merge of S and 5', and P" is the disjunction of P and 
P'. Since validity is, by definition, truth in all interpretations, the fresh variables are 
implicitly universally quantified, so this approximation satisfies the definition above. 

Path simulation is guided by the recursive structure of the regular expression. Hence- 
forth, "simulate means "symbolic simulate." 

Concatenation Concatenation is handled very simply: to simulate the paths in a • ß, 
starting with a simulation state (S, P), first simulate a from (S, P) to obtain a simula- 
tion state {S',P A Pa), then simulate ß from (S',P A Pa) to obtain a symbolic state 
(S",PAPaAPß). 

Union There are two approaches used to simulate a + ß from pair (S, P). The most 
obvious approach is to simulate a and ß separately, yielding two symbolic states. Fur- 
ther simulation would be performed from these states separately. An invariant could be 
proved by collecting the set of symbolic states after an entire simulation, and checking 
the invariant for each state in the set. The problem with this approach is that it may redo 
the same work many times, because the symbolic states will be very similar. 

The second approach is to compute the merge of the two end states. This approx- 
imation seems crude, but (surprisingly), works very well for verifying the TORCH 
Instruction Fetch Unit, described in Section 4, and greatly reduces the complexity of 
verification. However, note that this may lead to false errors in other designs. 

Currently, the choice of which method to use for unions is manual. The regular ex- 
pression is split into separate expressions which are simulated separately to give several 
pairs. Pairs are merged for union operations within the individual expressions. 

Repetition Obviously, one of the major problems is that there are an infinite number 
of paths when the regular expression contains stars. The star operator is handled by 
merging the results of simulating the starred expression a small number of times, to 
find a symbolic state that subsumes the symbolic states that would be computed by 



exactly simulating all possible numbers of iterations. This approach is similar to that 
used with MDGs by Zhou et al. [26]. 

The basic method is to repeatedly simulate the expression inside the loop, merg- 
ing the result with the previous result until the symbolic state is identical to the result 
from the previous iteration, modulo renaming of the fresh variables. The pair (5*, P*) 
resulting from this process approximates all the pairs that would have resulted from 
simulating each of the paths represented by the cycle. 

In some cases, this loop generalization is too conservative, resulting in false nega- 
tives. For instance, in the TORCH memory system design some pipelined registers take 
several cycles to reach a stable state when the FSM traverses the loop. If these registers 
are generalized early, the method will propagate the fresh variables to other state vari- 
ables, causing them to be generalized unnecessarily. To get a better loop approximation, 
the user may direct the simulator to traverse the loop several times before the simulator 
performs the generalization. 

3   Verification Process 

The the verification process is illustrated in Figure 3. Given a description of the im- 
plementation in synthesizable Verflog, a translator converts the Verflog description into 
an HLN description. A HLN machine corresponds to a Verilog module and consists of 
a set of input names, output names, a set of type declarations which defines all input, 
output, and local variables, and a set of behavior descriptions. 

The HLN description is fed to an interactive guidance tool. The guidance tool takes 
the HLN and the regular expression extracted from the FSM. It then simulates along 
the paths described by the regular expression, with user interaction to determine how to 
merge states in if-then-else constructs and around loops. Before the simulation, a sym- 
bolic state and a symbolic input set are created. The symbolic simulator then uses this 
state, input set, and the next state transition function to repeatedly execute the imple- 
mentation and produce the next symbolic state. The simulator in turn calls a decision 
procedure which is used to simplify the state and used to check equality between states 
of separate execution paths. The end result is a set of simulation states, one for each 
simulation path. 

A proof obligation is then created for each simulation state. Let (S'^P-) be the 
simulation state resulting from simulation path number i, starting from (S, True). The 
proof obligation to prove correctness invariant / is then: 

(P! AI(S)) ^ I(Si) 

If the proof obligations generated for all simulation paths are valid and / is also true in 
the initial state, then / is an invariant in all reachable clean states. 

The logical formula is then fed to SVC (the Stanford Validity Checker) for check- 
ing. SVC is a decision procedure for quantifier-free first-order logic and uses an algo- 
rithm similar to the algorithms by Shostak [20, 19] and Nelson-Oppen [17]. The input 
Boolean formula to SVC can contain Boolean operators, uninterpreted functions and 
interpreted functions, and distinct constants such as the Boolean truth and bit constants. 
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Fig. 3. The verification process. 

It may also include the finite bitvectors and records used to model the state of the hard- 
ware. SVC will either return with "Valid", or a counter-example. As SVC is used here, 
the former indicates that the invariant holds, and the latter indicates that the invariant is 
wrong, or one of the approximation steps has lost a critical constraint. 

4   TORCH 

We have applied the approach to verifying the correctness of the Instruction Fetch Unit 
in the TORCH microprocessor. The TORCH design was created by Horowitz's group 
at Stanford University from 1991-1992 and later optimized. It was constructed for re- 
search into microprocessor architectures and has not been fabricated. TORCH is an 
extension of the MIPS R2000/3000 design [12], which is a 32 bit instruction archi- 
tecture with a five stage pipeline. It has been simulated (nonsymbolically) extensively, 
although not to the same degree as in an industrial setting where the resources avail- 
able for simulation are far greater. The Verflog source code of the TORCH is publicly 
available at http://www-flash.stanford.edu/torch/. 

The TORCH architecture is sketched in Figure 4. TORCH extends the MIPS ar- 
chitecture with some extra optimizing features. It includes two asymmetric pipelines 
with dual issue and dual retirement. To hold various status bits introduced by compiler 
optimizations, the 32 bit instructions are extended with an extra byte, making the in- 
structions 40 bit wide. For debugging purposes, TORCH can run in a special MIPS 
compatible mode, where the optimizations are turned off (and the extra byte ignored). 

We have previously verified properties of the RTL description of the Instruction 
Fetch Unit (IFU) [23]. The IFU consists of four modules: an instruction cache (ICache), 
the IFetch Data Path, the IFetch Control, and the PC Unit Data Path. The description of 
the IFU consists of 1700 lines of Verflog and uses various common library routines that 
total approximately 300 additional lines. There are 60 bits of control state (including 
state machines and random registers with control information); 566 bits of the PC and 
saved PCs/next PCs, etc.; 1200 bits of explicit data registers. The cache and memory are 
modelled as unbounded arrays, but each memory word is 64 bits wide and each cache 
line is 320 bits wide. In addition, each cache line has a 24 bit tag. A block diagram 
appears in Figure 5. 
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Fig. 4. A diagrammatic overview of the TORCH architecture. 

PC Unit 
Datapath 

IFetch 
Control 

ICache 

IFetch 
Datapath 

ir | 

L2Cache 

Instrs 

Fig. 5. The Instruction Fetch Unit (IFU). 

The PC Unit Data Path maintains a program counter (PC) and calculates the next PC 
based on input from the surrounding modules, in particular the decode/execute module. 
The IFetch Data Path and Control return the instruction corresponding to a given PC. 
The PC is looked up in the ICache buy matching the PC with the ICache tags. If there is a 
match, called a hit, the instruction is returned. Otherwise, there is a miss and the IFetch 
Control will output a stall signal and initiate communication with the main memory (in 
actuality, the ICache communicates with a level 2 cache, but the model here merges 
the level 2 cache and memory into a single unit) to fill the 8 instruction cache lines 
(8 * (32 MIPS bits + 8 bits status information) = 320 bits). Once its request is being 



serviced, the IFU receives two 32 bit words per cycle in 5 cycles, in total 10 words. 
The first two words contain the eight status bytes, and the last 8 words are the MIPS 
instructions. Each instruction is matched with its status byte and stored in the cache 
line. The cache has 1,024 cache lines. Following this, a refetch occurs, the stall signal 
is lowered, and the instruction is provided on the interface. 

The unpacking and matching of MIPS instructions with status bytes is carried out to 
provide compatibility with the MIPS architecture. Information is stored in 32 bit words 
in memory. The unpacking is of course turned off when TORCH runs in MIPS mode 
and only 8 words are loaded from memory during a cache miss. 

5   Verifying TORCH 

The correctness invariant is: 

For every instruction location, if the location is registered in a valid cache line, 
the contents of the cache line are the same as the contents of the line in memory. 

The wording of this invariant is intentionally vague. "Contents of" hides the fact that 
the true invariant is almost a page long, because the format of the data in the cache is 
different from the format in memory. As the data is transferred, an extra byte of status 
information is appended to every 32 bit word in the cache. So, comparing the contents of 
the cache and memory requires extracting the appropriate 32 bit fields before comparing 
them with the memory. Writing this expression is a bit tedious, but not intellectually 
difficult 

There is an FSM in the IFetch control logic and also one in the memory module. 
The two state machines together implement the data transfer protocol on each side 
of the memory bus. Each controls the data transfer on its side and keeps track of the 
progress of the current transfer the memory line, i.e., how many pairs of instructions 
that have been transferred. We form the product of the two FSMs to form a single FSM 
representing the data transfer. The TORCH mode FSM is illustrated in Figure 6. The 
FSM for the MIPS mode is similar, but slightly simpler. 

The input signals of the FSM are: (1) cache miss (M) which triggers the cache miss 
process, (2) MIPS mode (P) or TORCH mode P, (3) the ITLB miss (T) which signals 
a miss in the TLB, (4) a nondeterministic delay (D) modeling the delay in the main 
memory or level two cache, and (5) level two cache miss (L). The cache miss M is 
a predicate on several state variables, and all other signals are inputs to the memory 
system. The set of input symbols of the FSM is the set of predicates which consists of 
terms from the following set: 

{M, M, M, P, P, T, T, L,L,D, D} 

The regular expression corresponding to the FSM is a union of three major paths 
(see Figure 7). The first path in the expression represents a cache hit. The other two 
represent a cache miss with and without TLB miss, respectively. 

The memory is an array and the cache is an array of records containing three fields: 
the valid bit (valid), the cacheline data (data), and the memory address (addr) of this 
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Fig. 6. The product of the two memory system FSMs for the TORCH mode. For clarity we have 
left out P (indicating TORCH mode) from every transition. 

[ [P_AM]     _     _ _ _    _ 
+ [(P A M AT) • (P A (D V L) A T)* ■ (P A (D VL) A T) • P ■ (P A L)] 
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((P A_DA_r AT) +_(P A D A L A T) • (P A D A L A T)* • (P A D A L A T))- 
(PALAT)-(PAL)]] 

Fig. 7. The regular expression corresponding to the TORCH mode FSM. 

cacheline. The correctness invariant above (that the contents of valid cache lines are 
the same as the corresponding location in memory) must be proved. The base case of 
the induction proof is trivial, since no cache lines are valid (the initial state is the state 
immediately after initialization, and initialization flushes the cache). For the inductive 
step, is to prove that if the property holds in an clean state S, then it is also valid in 
the next clean state S'. A small trick is required to deal with the quantifier, since SVC 
doesn't support quantification: we substitute a fresh variable for the quantifier in the 
consequent (this is called Skolemizing) and manually instantiate the quantifier in the 
antecedent as necessary. 

A prototype guidance tool has been implemented in Lisp and applied it in the ver- 
ification of the IFU. In the proof, each of the three paths in the regular expression was 



handled separately. The proof for MIPS mode was similar. The run-times for simula- 
tion and subsequent verification are shown Figure 8. The last column in the table lists 
the possible number of paths after loop generalization. However, unions of paths were 
collapsed into a single path using the generalization method described above. 

Regular 
Expr. 

Mode Run-time Memory usage Possible Number 
of paths 

1 MIPS 00:17 16 MBytes 1 
2 MIPS 03:43 52 MBytes 2 
3 MIPS 30:22 72 MBytes 108 
1 TORCH 00:17 16MBytes 1 
2 TORCH 04:05 53 MBytes 2 
3 TORCH 84:40 81 MBytes 324 

Fig. 8. Combined run-times of the simulation and verification required for each path. 

From the table of Figure 8, paths specified by the third and the sixth regular ex- 
pressions take much more time than the rest of the paths do. This is due to the cost of 
simulation. Most of the simulation time is spent on finding the loop approximation and 
merging paths from union or loops, which needs to compare variables in two states. 
Since the memory system has 86 state variables, the comparison is quite expensive. 
However, without merging parallel paths, we would have 108 (108=22 x 33) and 324 
(324=22 x 34) paths (each of the first two stars generating two paths and each union gen- 
erating three paths) for MIPS 3 and TORCH 3, respectively. If the simulation had not 
merged these parallel paths, the time for simulating these paths would have been about 
108 and 324 times of the listed time for these two regular expression. The proofs were 
carried out with many fewer strengthening invariants than previously needed. Apart 
from the property, 12 extra conjuncts were needed to strengthen the invariant. 

Two of these simply list the reachable states of the FSM for the phase one and phase 
two latches of the state bits of the FSM. These invariants are evident from inspection of 
the HDL source, or could be computed automatically by well-known state enumeration 
algorithms. There is another invariant that says that the phase one and phase two latches 
are the next state and current state of the FSM. This invariant is also apparent from the 
HDL, or could be computed by extracting the next state function. There is also a simple 
invariant that says that the internal reset low when the input reset is low. 

Four of these were simple historyless invariants and were found by manually ap- 
plying and existing method [24]. Here is a typical one: MemStallSl =» (FSMS1 = 
FSMS2). This invariant says that whenever MemStallSl is false, the phase two vari- 
able (FSMS2) has been overwritten by the phase one variable (FSMS1). 

Four of the conjuncts (see Figure 9) had to be found by trial and error. Some of these 
may be historyless properties that could not be found by the (incomplete) technique that 
was used. There was one unexpected issue in the design that may contribute to the need 
for these invariants. The FSM does not discover a read miss until the following cycle, 
when it transitions to reflect the cache miss. The Hit state in the FSM thus corresponds 
both to the hit states in the data path and the first miss state. Since the clean states are 



TagS2 = PCChainS2r[29 : 3] 
(FSMS2 = HIT) A IStallS2 =s> (PC = PCChainSlr) 
(FSMS2 = HIT) A IStallS2 A TORCHMODE => 
(MemAddress = 5 x PCChaincs2r) A (MemAddress = 5 x PCChainSlr) 
(((FSMS2 = HIT) A ICacheMiss) V FSMS2 # if/T) A TORCHMODE 

=> (AfemAddregs = 5 x PCChainS2r)  

Fig. 9. Four conjuncts of invariants found by inspection and trial and error. These are logically 
accurate, but the notation and variable names have been modified for readability. 

defined as the hit states, this requires the reachability invariant to be inductive on both 
kinds of states. 

This effort uncovered the same bugs as found by the previous method [23]. The first 
bug is that it writes the tag of a noncacheable instruction into the ICache tag register file. 
As in the MIPS architecture, TORCH provides for both cacheable and noncacheable 
memory accesses. When the IFU fetches a noncacheable instruction, it causes a cache 
miss and sends the request to main memory. When the noncacheable data arrives at 
the IFU, the requested instruction is passed on to the decode/execute unit. Since the 
instruction is noncacheable, neither the data nor the tag should be written to the ICache. 
However, a bug in the implementation of the IFU causes the address tag of noncacheable 
instructions to be written into the ICache tag, while the noncacheable data is not. 

The other two bugs were found from the control logic of the PC tag. The first bug 
causes the PC tag latch to not keep the current PC tag during an ICache miss. Instead, 
it incorrectly stores the tag of the immediately following instruction. At the end of the 
ICache miss, the tag corresponding to the next instruction is written into the ICache tag 
register file while the ICache data corresponding to the current PC is correctly written 
as ICache data. 

We discovered a second bug immediately after the first one was corrected. Consider 
two branches Bi and J32 with target addresses that have different tags Ti and T2 but 
identical cache line indices. The bug manifests itself at the end of the ICache miss 
caused by the target Ti of Bi: After the ICache line has been updated, the IFU issues 
an internal refetch command to the ICache. This refetch gets the designated instructions 
and its tag from the ICache, and the ICache tag is compared with the PC tag as in a 
normal fetch. However, the bug causes the next PC tag to be loaded into the PC tag 
latch before this comparison is done. Thus, if the new PC tag is different from the old 
PC tag, this refetch will generate another ICache miss. This second cache miss will 
cause the same data to be fetched, but will wrongly store target address T2 of JB2 in the 
tag register file. Following this, the instruction for the target of Bi is correctly returned. 
However, when the instruction for the target T2 of 2?2 is requested, T2 is already in the 
target register file, which wrongly causes a hit. As a result, an instruction from the Bi 
cacheline is incorrectly returned. As before, this causes TORCH to following a wrong 
path of execution. 

The original effort took 2 person-months. It is hard to estimate the effort required 
by the new method, since the prototype tools were being developed while doing the 



verification. Furthermore, the user was familiar with the design of TORCH as well as 
the invariants. We guess that it would have taken 1-2 person-weeks without previous 
knowledge of TORCH and the invariants. 

6   Discussion 

The technique described here is not universal. There are several restrictions and as- 
sumptions about the design style: 

- There is a simple property to be proved on some subset of the states (which we will 
designate as the clean states). 

- The number of clean states is small. 
- The product of the control FSMs is small (no more than hundreds of states). 
- Cycles are wait loops, in which state variables do not change. 
- The control is not pipelined. 

Interestingly, at least some designs fall within these guidelines, yet state enumeration 
approaches are not easy to apply because of the difficulty of verifying the control FSMs 
independently of the data path. We are investigating ways to remove and generalize 
these restrictions. 

The method needs to be more automated. The current implementation still involves 
some manual work, such as extracting the finite state machine and finding the regular 
expression. From the design in the HDL description, it should be possible to generate 
the transition function for the control state machine automatically and then generate the 
regular expressions using the existing algorithm. In addition, there needs to be a tool 
that finds the historyless invariants automatically. 
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